TECHNICAL INFORMATION SERIES

GPO PRICE $

CFSTI PRICE(S) $

Hard copy (HC) _ 2, o©

_Microfiche (MF)

1853 July 65

ENHANCEMENT OF THE
TRANSVERSE PROPERTIES
OF FIBROUS COMPOSITES

§ N6éc555|30r58 Py
g (PA’ ES) /
i Qr-75%07 1s

(NASA CR OR TMX OR AD NUMBER)

(CATEGORY)

SPACE SCIENCES
LABORATORY'




SPACE SCIENCES LABORATORY

GENERAL@D ELECTRIC

MISSILE AND SPACE DIVISION

TECHNICAL INFORMATION SERIES

AUTHOR SUBJECT CLASSIFICATION NO.
N.F, Dow Composite Materials DATI:66SD36
' Feb, 1966
"™ ENHANCEMENT OF THE ¢« °“‘;°
TRANSVERSE PROPERTIES OF v
REPRODUCIBLE COPY FILED AT MSD LIBRARY, NO. PAGES
DOCUMENTS LIBRARY UNIT, 4 5
VALLEY FORGE SPACE TECHNOLOGY CENTER, KING OF PRUSSIA, PA.

p—

SUMMARY

A method of analysis is developed for the deter-
mination of the elastic constants of a variety of
configurations of three-dimensional filamentary rein-
forcement for plastics. This analysis is employed in
preliminary evaluations of the effectiveness of several
approaches to the enhancement of properties transverse |
to the filaments, For glass-reinforced epoxies, binders
of increased stiffness, elliptical filaments, and
triangular filaments are all shown capable of effecting
improvements in transverse stiffnesses. For epoxies
reinforced by advanced filaments like boron, however,
nearly this degree of improvement was found possible
through proper filament orientation. Further studies of
other configurations and combinations are suggested,
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ABSTRACT

A method of analysis is developed for the determination of the elastic
constants of a variety of configurations of three-dimensional filamentary rein-
forcement for plastics. This analysis is employed in preliminary evaluations
of the effectiveness of several approaches to the enhancement of properties
transverse to the filaments. For glass-reinforced epoxies, binders of
increased stiffness, elliptical filaments, and triangular filaments are all
shown capable of effecting improvements in transverse stiffnesses, For
epoxies reinforced by advanced filaments like boron, however, nearly this
degree of improvement was found possible through proper filament orientation.

Further studies of other configurations and combinations are suggested.
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INTRODUCTION

Filamentary reinforcements for composites while exhibiting potentials
for advanced properties along the filaments provide less attractive charac-
teristics transversely. Indeed effective utilization of the high strength and
stiffness of advanced filaments has been shown (for example, Ref. 1)
to be hampered by the usual poor properties transverse to the filament
orientation. Possibilities of enhancement of transverse properties need to
be considered simultaneously from two standpoints. That is, one needs to
know both what the magnitudes of the possible improvements are as well as
how they can be effected. In this paper both these problems will be considered.
First a method of analysis will be developed for the evaluation of the transverse
effectiveness of various types of reinforcement. Second this analysis will be
applied to the use of shaped filaments and multi-directional reinforcement to
assess the improvements effected and to determine directions for further
advances. The use of particulate fillers in combination with filaments will also
be evaluated.

The investigations reported herein were supported by the NASA on

Contract NASw-1144,



ANALYTICAL APPROACH

The analytical approach used relates to that followed in Reference 2
to determine the properties of integrally stiffened plates. Therein the rein-
forcement provided by integral stiffening is evaluated as fully effective in the
direction of the stiffening but reduced in stretching effectiveness transverse
to the stiffening by a factor B. Similarly the transverse shearing effectiveness
is evaluated as reduced, - in this case by a different factor B’. With the
longitudinal and transverse effectivenesses established, the remainder of the
analysis is a straight forward elasticity problem of trigonometric resolution
and summation of stiffnesses to yield the desired elastic constants.,

The basis for the extension of the integral stiffening analysis to fila-
mentary composites is illustrated schematically in Figure 1. In this figure
the portion of the binder material between filaments in a uni-directionally
reinforced filamentary composite is shown to be similar to the skin and integral
ribbing of integrally stiffened plates. Neglecting the filaments (i.e., treating
them for the moment as holes) the stiffness of such a two-dimensional array

may be written according to the analysis of Reference 2 either as
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In these equations
ET = stiffness transverse to round holes in binder
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E = Young's modulus of binder material

b
ts = "skin thickness'' - thickness of straight elements of binder
(if any) between holes
v = Poisson's ratio
B_L = transverse effectiveness of + - shaped material between

holes in binder

A = cross-sectional area of + - shaped material between holes
b =  hole spacing

8 = transverse effectiveness lost by making holes in binder

v, =  volume fraction of binder material

The next step is evidently to fill the holes with filaments to yield an

equation for the two-dimension composite as follows
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where for simplicity the Poisson's ratios of filaments and binder have been
assumed equal; B. represents the transverse effectiveness of the filament, and
Ef is the Young's modulus of the filamentary material.

Extension of this type of analysis to three dimension and for application
to filaments and binders of different Poisson's ratio is discussed in the following

sections. The derivation of the equations is given in the Appendix.




EQUATIONS FOR ELASTIC CONSTANTS

General Equations - The elastic constants evaluated in the Appendix are those

applicable to an orthotropic composite having reinforcements symmetrically

disposed about the three principal axes at plus and minus the angles indicated

in Figure 2. For such a composite there are nine elastic constants defined by

the following equations

Op = Aje A6t Arq
Op = Aye H AL G T A
Oy = A€ A€ A e
Tiz = B2
Ta3 = fg %3
Tiz = 973

where

0, 0, 6 direct stresses in the 1-, 2-, and 3 - directions

1" 27 3
el, 62, 63 direct strains in the 1-, 2-, and 3 - directions
‘le, 723, Tl3 shear stresses in the 1-2, 2-3, and 1-3 planes

Yi2° %3 713 shear strains in the 1-2, 2-3, and 1-3 planes

(4)

and the A's are the elastic constants given by the equation in the Appendix.

These constants are related to the conventional stretching and shearing stiff-

nesses E and G and Poisson's ratio v by the following equations.
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General equations like (4) and (5) may be found in the literature of three-
dimensional elasticity for application to any orthotropic solid with the specified
symmetries (so that couplings among shears and displacements are avoided).

The evaluation of the constants employed in these equations for filamentary
composites, however, involves less standard procedures. These special charac-
teristics are discussed in the Appendix and illustrated for specific cases in the
following sections.

Equations for specific reinforcement configurations - In order to illustrate the

application of the equations derived in the Appendix to specific configurations of
fibrous reinforcement, four sample cases will be considered:
| (1) Uni-directional triangular filaments in the 1l-direction
(2) Orthogonal elliptical filaments in the 1- and 2 - directions with
minor axes of the ellipses oriented in the 3 - direction
(3) Round filaments oriented in the 1- and 2- directions and at

angles thereto.



(4) In this case the effects of variations in the properties of filaments
and binder are considered for the orthogonal filaments of Cases
(2) and (3).
The equations for the elastic constants for these four cases are given
in Tables 1, 2, 3, and 4 respectively, and their application to the evaluation

of transverse effectiveness is discussed in the following section.




EVALUATIONS OF TRANSVERSE EFFECTIVENESSES

In the section ANALYTICAL APPROACH the concept of the use of
; transverse effectiveness factors B was introduced. Let us now consider the
evaluation of these factors, and their application to the determination of the

effectivenesses of the several example cases given above.

Evaluations of B's

‘ Equations relating the stiffnesses of uni-directionally reinforced
composites to the effectiveness coefficients B8, B’, and B'' may be readily
derived as special cases of the general equations developed in the Appendix.
For the three-dimensional case, with the Poisson's ratio of the filaments vf

not equal to those of the binder, these equations are:
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(1-8' v,) = (8)

’ ® ’ - o
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(10)

By - o ° (11)

where E
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(1 +vb)(1-2vb)
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(1 +vf)(1-2uf)
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Eb(l-vb)
(1 +vb)(1 -va)

Ef(l -vf)
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TII=

- 17
V = T Vb+vf

volume fraction of filaments

<
]

<
1]

Poisson's ratio of filaments

0
n

12 shear stiffness of binder having unidirectional round holes,
o in the plane of the holes

623 = shear stiffness of binder having unidirectional round holes,
o transverse to the holes

Other symbols as before,
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In essence equations (6) - (11) define factors (B) for transverse
effectiveness-for use in multi-directional reinforcement patterns-in terms
of unidirectional reinforcement. Accordingly, any available data on the
transverse effectiveness of unidirectional filamentary reinforcement may be
employed via these equations, and those of the Appendix for multi-directional
configurations.

In order to obtain values of the B's for use in the present evaluations of
approaches to improvements in properties, the upper bounds of the elastic
constant analysis of Reference 3 were used to yield values of 8. Typical
results are plotted in Figure 3 showing that, as for the integral stiffening of
Reference 2, the transverse effectivenesses as represented by the values are
slightly - but not substantially - different for stretching and shearing. The
values calculated using the upper bounds of Reference 3 will be employed in the
following sections to measure the merits of triangular and elliptical filaments

and multi-directional reinforcement patterns.

Evaluations of Triangular Filaments - The special case of filaments in the

shape of equilateral triangles is of interest because, with ideal packing, it
permits straight-line binder elements among the filaments (Figure 4).

In the limit the configuration shown in Figure 4 is akin to those for which
the waffle-type analysis of the appendix applies. That is, the material between
the triangular filaments is effective along the straight-line elements as well as
transverse to them; the components of stiffnesses both along and transverse to
each element thus contribute to the overall s‘tiffness, as described by the
equations of Table 1,

The ratio of transverse stiffnesses produced by the straight-line con-
tinuous binder elements of Figure 4 (as represented by the equations of Table 1)
to the transverse stiffnesses of the usual discontinuous binder are plotted in
Figure 5 for triangular glass filaments in epoxy. This material combination
was chosen as a typical one to use as a basic reference. The same materials
will also be used for other evaluations; effects of changes in materials will be
considered later. Not surprisingly the gains shown are relatively greater for

the higher binder contents, but they never approach the factors of two or more




improvements that would be desirable, and that, as will be shown, appear
accessible by other approaches.

One characteristic of the triangular filament which may deserve
further consideration, however, is the fact that the transverse stiffness is

enhanced in both transverse directions (E, = E_). This isotropy through the

2 3
thickness may be of value for applications in which multi-axial stresses are
encountered,

The fact that the straight-line binder elements apparently become more
effective as the binder contributes a greater percentage of the overall properties

also suggests that for relatively stiffer binders these straight-line elements may

be more effective,

Evaluations of Elliptical Filaments - For most shell structures, stiffness

properties in the thickness direction of the shell wall have little influence upon
the overall response. For such applications, let us consider configurations like
ellipses to increase properties in the plane of the shell. Experimental data
(Reference 1), for example, have shown that 4 to 1 aspect ratio glass ellipses
properly packed in 50% by volume epoxy enhance the transverse stiffness in the
major axis direction of the ellipses by very nearly 100%. (Subsequent (unpublished)
data have shown that the accompanying reduction in stiffness properties through
the thickness - i.e, in the major-axis direction - is negligible.) At first glance,
then, ellipses appear to have a promising potential, To find just how valuable
such an improvement is, however, requires some examination of the importance
of the transverse stiffness,

One measure of the importance of this property is obtained by comparison
with other approaches which achieve the same property. As a first example,
then, compare the properties of round and elliptical -filament reinforced com-
posites having comparable amounts of orthogonal reinforcement to provide biaxial
stiffness. The comparison is made in Figure 6.

In Figure 6 the stretching stiffness in the l-direction (El) is plotted
against the percentage of reinforcement oriented transversely. In all cases the
total amount of reinforcement (i. e. the sum of the reinforcements in the two

directions) is held constant at 50% by volume of the composite., The values

10




plotted were calculated from the equations of Table 2 and 3 for

o

Ey

10,500,000 psi, v 0.2

f

500, 000 psi, v, =0.35

b

that is for properties representative of E-glass filaments in epoxy binder.

Two curves are given for both the round and elliptical filaments,
representing (1) the B - values applicable to 50% volume fraction laminates
with each lamina having unidirectional reinforcement (the upper curve) and
(2) the B - values for random mixtures of filaments in the two-directions (the
lower curve). Differences between the upper and lower curves are small, as
can be seen. The B - values for the round filaments are those plotted in

Figure 3, Those for the ellipses were calculated to make E. = ZE1 for 100%

1
of the reinforcement in the 2 -direction.

With the curves of Figure 6, it is possible to compare directly the
relative effectiveness of rounds and ellipses for providing a given transverse
stiffness. For example, suppose that transverse stiffnesses ranging upward
from that for the unidirectional ellipses is to be obtained by the orthogonal
rounds, To achieve these stiffnesses some of the longitudinal (1-direction)
round filaments must be oriented in the 2-direction; the stiffness in the
1-direction is thus reduced, and the reduction is substantial, - as shown by
the '""equivalent rounds' curve on Figure 6,

Each point on the ''equivalent rounds' curve of Figure 6 has the same
transverse (2-direction) stiffness as the ellibtical filaments at the same value
of the abscissa. Thus, for example, with 20% transverse reinforcement the
ellipses provide an El of 5100 ksi approximately, whereas the equivalent
rounds (i.e. the rounds giving the same EZ( = 3400 ksi) as this configuration of
ellipses) would provide only the E1 given by the ''equiv'' curve at this abscissa

(20%) or 3900 ksi.,

Evaluations of Bi-Axial Stiffness of Filaments at Angles to the 1- and

2-Directions - Filaments making small angles (of + 8 degrees) to the 1- or

2-directions are less effective in providing transverse stiffness than orthogonal

11




filaments. The same type of comparison made for orthogonal rounds and
ellipses in Figure 6 is made for rounds at ie° and orthogonal ellipses in
Figure 7. The "equivalent rounds' curve in Figure 7 is substantially below
that in Figure 6.

Values shown for the stiffnesses with various angles of reinforcement
were calculated from the equations of Table 4 with the B - values corresponding

to those for the lower curves of Figure 6,

Effects of Material Properties on the Importance of Transverse Effectiveness -

Comparisons like those of Figure 6 suggest that for glass-reinforced epoxy, if
the application requires transverse stiffness of one-half or more of the axial
stiffness, shaped filaments like 4 to 1 ellipses may provide substantial
structural improvement, If advanced filaments like boron are considered,
however, a different result is obtained.

In Figure 8, the curves of Figure 6 are replotted for boron instead of
glass reinforcement. With the high ratio of longitudinal to transverse stiffness
provided by the boron, the factor 2 improvement associated with the elliptical
geometry for unidirectional reinforcement is nearly as readily attained with a
few transverse round filaments, Hence, the 'equivalent round' curve is only
slightly below the curve for the ellipses.

A similar result is obtainable for changes in binder properties. Thus
the use of a hypothetical filled binder (properties like those of the alumina-
filled epoxy of Reference 1 were used for calculation) can raise the overall
stiffness level (i.e. the longitudinal as well as the transverse stiffnesses) of a
glass-reinforced plastic as shown in Figure 9. Thus the binder improvement
is more effective than the filamentary ellipses, for example, for they enhance
only the transverse properties, If, however, the reinforcement were boron,
the improvement arising from the stiffer binder would be a much smaller per-
centage of the overall stiffnesses, With boron, then, once again transverse
stiffness properties could be attained nearly as readily with a few transverse

filaments as with a binder twice as stiff as epoxy.

12




CONCLUDING REMARKS

A method of analysis has been developed for the elastic constants of
plastics having reinforcing filaments in various directions in a three-dimensional
array. This analysis has been applied to make preliminary evaluations of the
effectiveness of several approaches to the enhancement of the transverse stiff-
nesses of composites. For glass-reinforced plastics, binders of increased
stiffness, elliptical filaments, and triangular filaments were all found to offer
potentials of improvements - the binder improvement appearing most effective
and the triangles least. With advanced filaments like boron, however, nearly
the same magnitude improvement in transverse properties could be obtained by
proper filament orientation as by filament shaping - or as could be obtained
from binders only about twice as stiff as epoxy. Further studies of other con-
figurations and combinations are desirable and may readily be carried out using
the elastic constant analysis developed. For example, diamond-shape filaments,
which approximate the 4 to 1 aspect ratio ellipse and also permit straight-line
matrix elements among the filaments, would be a logical extension of the present
studies, Such filaments combined with a high modulus binder should provide

attractive elastic properties in all axis directions.

13



APPENDIX - DERIVATION OF EQUATIONS

The elastic constants for the three-dimensionally reinforced composites
are derived by partial differentiations of the general expression for the strain

energy of a repeating rectangular element b1 by b, by b3 of the composite.

2
This derivation is analogous to that in Reference 2 for integrally stiffened plates
with the following differences.

(1)
(2)

It is a three-dimensional rather than a two-dimensional analysis,

Properties of binder and filaments are different, whereas ribs and

skin in Reference 2 were of the same material.

(3) Only extension and shearing are considered. Reference 2 also
evaluated bending and twisting stiffnesses.

The general expressions for the strain energy of stretching of a com-

posite subjected to the strains ¢

17 €50 and €, may be written as follows:
by by Ps
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V=3 (T+v (1-2v,) (e, +e, +e3 N1-v ) +le 6,6 €5+ € €02y )]d(1)d(2)d(3)
o O (o]
b, (A-1)
By -y ) E (1-v,)
= P e 2w )| an)
Z (1+vf1)(1-2vf1) (T+y ((T-2v )| |1 s
(0]
I ove B B, v, E. B
+ 1 1 1 1 b b -e ( + + )(ZV ) d(l)
2 (T+v, X1-2v,)  (+v1-zuy|[€2 T3 43" s
£ f b b 1
(6] 1 1
b p— -
L By (1-vg )8, E (1-v,)8
+ o SN S S M | PR T T [T EY
2 (1+v, W1-2v, ) ~(+vy1-2v) I|'€2 " €3 "'
£ f b b 1
o 1 1
b, _
2
: Efz(l-vfz) E (1-p )
e L 2 (v, )] at2)
2 (I+v, N1-2v; )  (1+v )N1-2v,) (e, vy
o f2 2 b b 2

14




b

2

‘ vV.E._ B
Z| |y -z, (1+vb)(1 va (eep +epe5 +epeslav, )fa)
o 2 2 2
\ r'bz
| 1 Efz( - vfz) B’z E(1-v)8 2 2
, + L - = (e,” + €. Nv, )] ac2)
2 (1+vf )(1-21/f ) (1+vb)(1-2vb) 1 3 f2
‘o 2 2
b,
1 Ef3( - vf3) E (1-v) 2
+ - - €., (v.)]4d(3) (A-1, cont.)
2 ﬁ+uf )(1-2vf) (1+ub)(1-2vb) 3 f3
o L 3 3
| b
1 ’ vf3 Ef3 B‘3 Vo By Bg
) Y7 (T+v, N1-2v,) ~ (1+vb)(1-2vb) (€1€z+‘z‘3+‘1‘3)(2"f3) 4(3)
o 3 3
by
] Efs(l-vf3)3'3 E(1-V)8 2 2
+ = - 2 _||(e,” +e, Nv, )] a3)
2 (Trv, Wi-2zv, )~ (wy Ni-2v) [[€1 "2 Ve,
o 3 3
AE: ) E, (1-1) 2
(€ (v, )] d(3)

| (1+v )(1-2v ) (1+vb)(1-2vb) L fs

1
+

Z

Ap
f

vafBo
5 8 8

(1+ Ve )(1--2vf )
S S

vibB

B (1+v )(l-Zu )

15



where

T QO @\ <

m

<

Subscripts

f
b

s
Eg (1-v, )8, E (1-v, )8
1 s s s b b’ -e (e e )<v )d(s)
2 (l+vf )(1-21/f ) (1+vb)(1-2v]o ST ST fs
o s s 1 2
bS (A-1, cont.)
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2 f e b -e S S f
s s LT LT s
o 1 2
b
s
. G B" G, B 2 d(s)
2 f '@ ~ b -e YS Ve s
s s T s

strain energy of distortion

Young's modulus

shear modulus

Possion's ratio

extensional strain

shear strain

volume fraction

filament

binder

1, 2, 3, s=1-, 2-, 3-, skew directions

Evident in the foregoing expression are the various B's representative

of the transverse effectivenesses of the filaments and binder elements among

filaments as discussed in the body of the paper. For simple extension, such

that the energy is measured by an expression of the form

2

b

Ef(l-vf

)

(1+vf)(1-2v

f)

(B,vy) (¢%) d(m)
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for example, the analogy between the B8's of Reference 2 and those used

herein is complete. For Poisson extensions of the form

b
1 Ve Eg
Z | Trvp -2y

o

(B.Vf)(2€1€2) d(n) (A-3)

however, the physical model of reduced effectiveness is somewhat different,
and strictly speaking a different effectiveness factor, as (B. + 0) should perhaps
be employed. For simplicity herein such a refinement is not considered. In
consequence slight errors are introduced which show up primarily as slightly

high calculated values of E . for uni-directionally reinforced (in the 1-direction)

1
composites. Inasmuch as this E_ is the most easily calculated of all the con-

1
stants, via the rule of mixtures, so it can be readily corrected, if desired, and
since the other values of stiffnesses appear accurately calculated (+ 5%) with one
B for direct and for Poisson strains, only one B is used in the following develop-
ment. (The use of one B like this also affects the calculation of the Poisson's

ratios for the composite, as v The magnitude of this effect has not been

21°
evaluated.)

In order to evaluate the strain energy, we require expressions for €
S

'Yf , etc, in terms of el, 62, and 63. These expressions are L
S

L

1

(1) The strain along a skew filament

€ = € coszd + ¢ coszd) + € cos2 Q (A-4)
f 1 2 3
SL

(2) The strain perpendicular to a skew filament and in the plane of the

lament and the 1 -axis

- €fs = € sin2¢$ + 62 coszlbcotzd + €4 cosZQcotzd

(A-5)
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(3) The strain perpendicular to

€
fsy, fST1
2q 2
. . Cos B cos ¥ (A-6)
£ 2 . 2 372
St sin @ sin ¢
2

Similar expressions can be written for the orthogonal shearing strains

as
. 2 2
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Substituting equations (A -4) - (A-9) in equation (A-1), integrating and simpli-
fying, yields -
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2(1+vf )(1-2vf) 2(1+ub)(1-2vb) f2 2(1+uf3)(1-2vf) 2(1+ub)(1-2ub f3
2 2 3
| E (1-v, ) )
j + fs fs Eb(l Vb) (cos4lb)(v ) o+
: 2(1+Vf )(l-ZVf ) 2(1+Vb)(1-2vb) fs
-] 8

E_(1-v,)B
[ fs fs ®s Eb(1 -vb)B-o ][cos4 ¢ cos? V+cos?O ]
+ Vf
s

2(1+ vfs)(l-Zst) 2(1+ Vb)(l-ZVb) sin4d

‘ st Efs ﬁ.s vb EbB-. - 2 4
: * 2(1+Vf )(1-21}f ) 2(1+vb)(1__2vb) \ 2cot dcos ¥ +
8 s

-

)

o

2 2
’ ’ 2 4 cos Pcos
+ 2 [Gfs B. - Gb B_.}K:ot dcos Y + s'mzzb )vfsJ +

Z[Gf B: - GbB:'.] [(cotzd coszlb coszﬂ) Y J
8 .4 f
sin ¢ s
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4
sin ¢

cotzd coszlb cos2 Q
(vf
8




v, E. B y
Yy By +[ £,76 9 b Ep P, ]

+ € - (v. )
€2¢3 (T+v )(1-2v,) (1+uf1)(1-2uf1) Mo )T-2v) |
v. E,. B
+[f2 T R ](v )
(Try, W1-2v, ) - (Lv)T2v ) | 1 f,
2 2
v, E. B
75 05 B E A v )
+ (Trv, -2y ) T+ NI-2v) |1,
3 3

E, (1-v, )B
+[ f f e, E _(1-v)8

4

S S 2 2 1+ 3

(1+vf )(1-21/f T (1+v, (1-2v )] [(cos Ycos Q)(l + .Cos )](Vf )
s 8 b b X sin ¢ s

v. E. B 4
+ fs fs .s - Vb Eb B-‘ cotzd cosz¢coszﬂ+ sec2¢{c054§b+cos Q} (v.)
(1+vfs)(1-2vfs) (1+vb)(1-2ub) sinZQS fs
2 2 2
’ ' 2 2 ’ ’ |—cos ¢ cos Pcos &
+4|:Gf B. —GbB_.}[(cos Ycos Q{|(vf )—4C-f B. —GbB_. l —2 (Vf)
s s s s s sin ¢ s
(A-10 cont,)
v. E_ B
te e, Yp By . e Bh B (v, ) +
(1+vb)(1—2vb) (l+vf1)(1-2vfl) (-1+Vb)(1-2vb) 1
v. E._ B
. L 5% % ELf o ](v )
(1+vf2)(1-2vf2) (1+vb)(1-2ub) £,

(1+v, )(1-2y ) B (1+v, )(1-2v,) (st)

v. E B
[ f5 715 0, Yy EyB , ]
+
3 3

E,. (1-v. )B
£ f E (1-v )B
+|: s s ’s ___b bZ -e ] [2 coszd coszﬂ] (Vf )

(1+vfs)(1-2vfs) (L+v, )(1-2v,) s
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*

vafﬁ. v. E B

d s s % YWwER e || .2, 2 2 2, 2 2
rl(l'“/f 2y " (1+Vb)(1_2ub)][(sm é cos Q+cot d{cos"dcos N +cos lb} +

f
s s
+ c:oszlb)](vf ) - 4[Gf B.' - Gb B_'.] [(coszd cosZQ)(vf )]
s s

S ]

+

(v, ) +
£

| E, (1-v)B
€32 E, (1-1) £, 1 e ) E (1-v,)8
2(T+ v )1-2v) 2(1+vf1)(1-2vf) 2(T+v, )(1-2v,)

E (1-v, )8
+[ £, £,"e, Eb(l-vb)ﬁ_. ](v )

- £
2(1+vf2)(1-2vb) 2(1+vb)(1-2vb) 2
E.(l-v,.)
+[ f3 f3 ) Eb(l-vb) ](V)+
2(1+vf3)(1-2vf3) 21+, N1-2v,) £,
E, (1-v,)
) £ £ _ E (1-v,) ( cont o
2(T+v, W12, )~ Z(T+v )(1-20,) st) cos = )
s s

E_(1-v, )8
+ fs fs ®s ) Eb(l-'}b)s-o cos4d cos4Q + cos4 )]
2(T+v, J1-2v, ) " 2(T+y NT-2v ) sing st
s s _

v, E. B
. fs fs .5 ) Vb Eb B_. . tzd 4 0 . C0t2¢ c°52¢[)cosz Q
2(1+y N1-2v, ) 2(1+p M(1-2v, ) cot ¢ cos T vy
s b s

sin " ¢
s

2 2
+ Z[Gf B -G B ][Q:Otzd cos4 Q4 cos Ycos Q>V ] N
* bi-e . 2 f
> 8 sin ¢ s

+ 2 [Gfsﬁ;;- G, B_':][coszd coszlb cos2 Q J (Vf )
[

sin4¢
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(A-10 cont.)

v. E_ B
. -0 T R s v ) 4
NI (1-2v) |y, )y(12v, )  (1+y N1-2v,) f
b b f f f f 1
1 1 1 1
v. E_ B v. E. B
N £, 6,9 i £, 59 v )
(1+vf )(1-21/f ) (1+vb)(1-2vb) f2
2 2
v. E. B
. f37 15 05 ] vy By By o )
(1+vf )(1-2:/f ) (1+vb)(1-2vb) f3 :
3 3 |
Ef (l-vf )Bo Eb(l-vb)ﬁ ‘ 2 2
+l s IS s _ ~® |{(2cos ¢ cos ﬁb)(vf )
( +f N -21/f ) (1+Vb)(1—2vb) s
s s
v, E. B
f Tf o v. E. B
+ S S b b -e (sinzdcoszl.b+cot2d{coszq$coszv+COSZQ}+

(1+v, )(1-2va) ) (1+vb)(1-2vb)

s

cosZQ)(Vf )| - 4|G; /3'. - GbB:. (coszd cosztb)(vf )

S S S ]

Differentiating successively with respect to € €, and €35 and collecting
the factors of each of these strains for each partial derivative yields the desired

elastic constants, as follows:

v
()
b1be3

afl ) 0'1
€ €
€ €
= A+ A (—§-> + A ——3—
1 2 \¢€ 3\e¢
1 1
E. (1-
E (1-v.) g (%) E.(1-V,)
A = b b + 1 1 b b (v.)
1 (1+v, N1-2v (1+Vf1)(1-2ufl) (1+vb)(1-2vb) £
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T

i T
|

TE_. (1-v,. )8
7 T % E(1-v,)8 o)
L(1+1,'f2)(1-2vf2) (1+vb)(1-2vb) 2

3 73

-Efs(l'vf 8, E (1-v,)8 ]

+ L(1+vf )(1-21/f ) (1+v N1 2v ) (v 3)
3 3 (A-11)
E; (1-v ) E,(1-1) 4
T )(1szu T - vz | (08 90 )
£ 7t Yy b s
[ B, (-3 )8 E,(1-1,)8 ]
+ o )(182u 5 " )(1-2;.) (sin*d)(v, )
| ”fs Ve b b’ ] 8
. . vfs Efs B’s % E 8, ](2 sind cos2) (v, )
Ty, W12y, ) (TH N1-2v,) £
s S
+ Gf B.' Gb B_ ][(4 sin d cos d) (v )]
i S S S

Similarly

v. E. B
A = bbb . i vy, Ey 8, v, )
2 (T4, N1-2v,) (Trv, N1-2v, ) (1+v )(1 Zv) "f
E

1 0
v. E_ B 2 B
+{ £, 5% Vp Evh ](v ) +[ 3 I3 @3
(T+y, W12y, ) (L#v N1-2v ) | £ 1+, N1-2v, )
£ £ b 2 £y 3
r Ef (1-v

)
- Vb B B (v.) *t l s - Epll-n)
(L+y, )1 Zub) £, (1+v, )(l—zvfs) (1+p M1-2v,)

s

" [E, G-y 8,
E (1-v )B v
s s 8 b b -e
- (cos aScos z/))(v )
[(1+ufs)(1-zvfs) (1+ub)(1—2vb)] \

(A-12)
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Vb Eb B—o

(A-12 cont.)

2 ’
+ cos Q}(vf ) - l:Gf !3.
s s s

fs) (T4 )(1-20,)

][sinzd coszlb +cot2q$(coszd coszi,b + coszﬂ)

- GbB'_.} [(4cos2q$ coszib)(vfs):'

and
v. E. B
a v, E . £,7f "o, ] VbEbB-. }(v )
3 (1+Vb)(1-2Vb) (1+Vf1)(1—2vf1) (1+yb)(1-2yb) fl
v. E.B | v, E. B
|2 2% _vibB-o v )+ B3 T30 Yy B he v, )
Ty )(0-2y ) Tg)-2v,) | e, [, WT-2y )~ (Try )0-2v) | f,
2 2 3 3
(A-13)
[E, (1-v, (1+8 )
+ L E s Eb(l-Vb)(1+B-.) (cosZQS cosZQ)(v )
L(1+vfs)(l-2ufs) (1+v N1-2v,) £
v, E. 8 v
£ 7L e v. E_B
s s s b b -e . 2 2 2 2 2 2
¥ |(T+v; )(1-2v, ) i (1+vb)(1-2vb)][Sm dcos™Q+cot ¢ (cos"d cos W+cos P) ¢
s s

likewise

+ coszlb (vf )y -

Eb(l—v

1

b)

] ]

[Gf 50' - Gb B_'J[(@coszd cos2 Q) (st)}

1 1 1

Ay T [(1+vb)(1-2ub)

|

E

f

(1-v

2

)
fz

f (1 _vf )Bo
(l+vb)(1-2vb)

(v.)
fl

(1+vf )(1-2vf )

|

E._(1-v
f3

(vf )

Eb(l-vb) }
2

(1+Ub)(1 -2 Ub)

(1+vf )(1-2v

., ) Eb(l-vb)B_.
i)

(vf )

(1+Ub)(1-2vb) 3

3
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[Ef (1-v, ) E. (1-v
+ s b

)
s b 4
(1+vf )(l-ny ) (1+vb)(1_2vb)J(cos d))(vfs) (A-14)

s S

E (1-y. )B
+[ fs fs .s _ Eb(l-vb)ls-o ][cos4d cos4¢’ + cos4QJ
(1+vfs)( 1-2va) (1+vb)( 1 -va) sin4¢

(vf )

-]

+

v. E_ B

f f "o v. E. B

s s s b b -e 2 4 2 2 1 1
[(lwfs)u-zvfs) ) (1+ub)(1-2ub)][2°°t dcos ¥ +cos Ycos 9(; 5+ 4ﬂ(vfs)

in @ sin ¢

2 2
+ {Gf ﬁ'. - Gb B:.][‘L(cotzd cos4!b + cos. lbzcos Q)] (vf )
s s sin ¢ s

2 2 2
" ), cos YPcos  cot ¢
+ [Gf B‘ - GbB_.] [4( —3 >](Vf )
s s sin @ s

also
v. E, B
A = b Bp fhier VB A, }(v)
5 (‘1+Vb)(1—2vb) (1+vf1)(1-2vf1) (1+vb)(1-2vb) fl
- v, E. B
. £, 5% e Eyf e ](v )
L(1+uf2)(1-2vf2) (1+vb)(1-2vb) . f2
" v, E. B
. f3 1378, i vy By B, v, )
_(1+vf3)(1-2vf3) (1+vb)(1-2vb) f3
FEfs(l-st) Eb(l-vb) 2 2
+ .(1+Vf )(l-vas) B (1+vb)(1-2vb) (cos™¥cos Q)(st) (A-15)
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E. (1-v. )B
+[ fs fs *s Eb(l-vb)ﬁ-o ]

(1+y, )(1-2uf ) (1+vb)(1-2vb) i

s S

-
y E; B v, E. B
+ s 8 S b b -e

(T, (1-2y,) B (1+vb)(1-2vb)‘
s

-

cosZicos’0

2 2
cot4q$ cos Ycos § +

2 2
[ZCotZQS cos Ycos  +

sin ¢

2 2
+lo, 8 -Gbpj.] 4<:ot2(6c052§b cos?n . o8 Peos Q)} (v, )

sin4¢

b

and finally,

] ] 4<coszq$ coszd) cosZQ>:| (Vf )
s

E. (1-v, )B
E, (1-v,) { £ £, o

Eb(l-vb)ﬁ_. ]
(v )

A = + -
6 = (1ry )I-2v) (1+vf1)(1-2vfl) T+ 120, L
E. (1-v. )B
. fz f2 . ) Eb(l-ub)B_ ](v )
| Tro, T2y ) (T+y, N1-2v,) £
2 2
[ Efs(l-vf3) E (1-v)
TR Oz '(1+?/ 2oy | V)
V - -
| £, t, b b 3
[ Efs “"’fs) E, (1-v,) .
+ - (cos Q)(v, )
-(1+vfs)(1-2ufs) (1+vb)(1-2ub) fS
CE, (1-v, )B
' fS fs ®s ) Eb(1 —vb)B—o }[cos4¢ cos4Q + cos4¢>
L(1+vfs)(1-2ufs) (1+ub)(1-2ub) sint4

26

sin ¢

4 4
cos lb+ cos Q

4

sin ¢

S

J(vf)
S

(A-16)



- v E_ B
f f e v. E B

s s 8 b b -e 2 4 2 2 1 1

+ - 2cot dcos Q+cos Ycos Q( + (v, )

-(1+st)(1-2st) (1+ub)(1—2vb sinzd Sin4d fS

2 2 2
e -G B'. 4<cos Q{cos"d + cos lp}) (Vf)

sinzd s

4 coszd cosz¢ coszﬂ
4 (ve )

sin ¢ 8

177 17
* Gf Bo - C'b ﬁ_‘
5 s

The elastic constants for shearing are found in a similar fashion to those

for stretching., Shears ylZ’ ‘)’23, and ')’13 are imposed and the strain energy
is evaluated as
b1 b2 b3
1 2 2 2
vis o Gy (15 + Y53 *+ %3) d(1) d(2) A(3)
o Yo Yo
b
n
1 , , 2 2
+ 2 Gf Bo B Gb B—o (vfn) <yfn + yfn ) d(n)
o noa LT LT
1 2
b
n
s 21 e, 8 -6 87|k, )¥2 aw)
2 f "o b -e f f
n n n n
o T
(A-17)
!'bs -
b= G, B’ -G B’ |t )72 + Y d(s)
7 £ b -] e\ "t £ )
Yo s s } L. L,
1 2
b :
+ i G. B"” —ag. B"} (v.) 72 d(s)
2 f o b -e f f
s s s s
No - T
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s[ By (L-vg) E (1-v,)
o 1 - 12S - 1b 12 (vf)(€£2 ) d(s)
2 (T+v, )(1-2v, ) (L+v M1-2v) s g
(o) s s L
bs E._(1 B
¢ 1% 08 E. (1-v, )B
+ _1__ s s s _ b b’ -e ( )(6 + )d(s)
73 (1+v. W1-2v,)  (+v )1-2v,) | £ '\%¢ €
f f b b s s s
o s s T T
1 2
b
s[ 2y E; B 2y, E. B
+_l_ s s s _ b b -e ( ) € +e ¢ re
2 (1+v,. (1-2v. ) v W1-2v )| 'Vf (‘f f £ f f
f f b b s s S s s
o s s L T T T
1 1 2
In (A-17)n =1, 2, 3;and
cos ¥ 2 L2 )
- cos ¥ _ A-18
st Y12 { sin & <C°S 4 - sin'd ] ( )
L
Tl
2cosd cos ¥ cosfl
* 723[ sin ¢ ]
cos § 2 L2 )
+713[ sin 3 (cosd-s1n d.
y =y cos ¢ cos Q + Y coszlb -cos’Q +y rcos é cos ¥
fs - 12 sin ¢ 23 sin ¢ 13 sin ¢
L |
A-1
T (A-19)
2 2
- cos?Q)
y - _y Q +7 cosd(cos Y - cos ) A-20
£ 12 €08 23{ 2 Y gcos ¥ )
T sin ¢
= +7 Q A-21
Gfs AP COSQ‘Coslbi‘)’Z?’ coswcosﬂi}’l?’cosd cos ( )
L
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2
= + Y Q
€ F 7’12 cosd cos ¥ 723cot é cos¥Pcos2 F 13 cos @ cos
‘°‘T1 (A-22)
cos ¥ cos
= + Losy cos 2 -
€ 723[ 2 ] (A-23)
S sin &

Substituting (A-18) - (A-23) in (A-17), carrying out the integrations '
and differentiations, etc., yields

(A-24)

A, =G + |G, B -G #& ' ’
7 b [ £0 b "J(vfl) +[Gf213.2 G, B_.J(sz)

(v.)

+ |G, g . Gbﬁ:'.] (vf3) + [Gf B.' -GbB: fs

3 %3 s®s

][coszil)(coszd -sinzci)2 +cosZ¢coszﬂ]
° . 2
| sin ¢

+ Gf B.'; - GbB_'_'.][coszﬂ] (vf )

FE_ (1-y. (148 )
f fs .s Eb(l-vb)(l+ﬁ_‘ 2 »
cos ¢ cos Pl(v_)

-]

+ -(1+st)(1-zvfs) ) (T, N(1-20,) ‘
"v. E. B
fs fs L ) Yy Eb B_. ) Zd Zw(
) | Ty T2 7 ™ T T2 cos”d cos”¥|(v; )

(A-25)

][ coszd coszlb cos’Q + (coszlb - cos'?'fl)2 J
ve )
s

2
sin ¢

+ [Gf B.’ - Gbﬁf
) s
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124 7] 2 cos
+ [GfSB°S - Gbﬁ_.] [cos d<

2
29 - cos 0
5 (vf )
sin ¢ s

S s

[E (1-1 ) E_(1-V,
S S
(1+vf )(1-21/f ) (1+V )1 Zu
) s s
PEf (l-Vf )B.S 1 U )B

}[cos Y cos QJ(V )
s

(A-25 cont.)

4
”:cos Y cos Q —————1 u (;os d)] (Vf )
sin ¢ s

(1+V, )(1-21/f ) (1+u )(1 -2V, )
- s s
v E; B v, E /3
s S ]
(1+vf N -va )
S S

1
(1+u )(1 2v )][ZCOS ¥ cos QGOS ¢+ sin2¢>]("fs)

G B” bB:,o](vfz)

171
G, B - GbB' 1 (v )
393 Il I
nr 2 2 . 2 2 2
Gf g - GbB_'_. cos Qcos d-zsm é) + cos dcos Ib](vf )
L s s 1L sin” ¢ s

¢ (1-y, )(1+B

S

)
®s

1M 2
o [cos ¢](vf )
| s

L(va )(1 zuf )
s S

E, (1-v. )(1+8 )}[ ]
b b -® 2 2

- cos ¢ cos ] (v, )
(1+Ub)(1-2vb) fs

vy EbB

l:vf Ef /30
s s s

- (1+yf )(1-.2uf )
s

S

B (T+y, NT-2v

)]|:2 cosz¢ cosZQ:I (vf )
b s
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TABLE 1. - EQUATIONS FOR ELASTIC CONSTANTS FOR TRIANGULAR
GLASS FILAMENTS IN THE 1-DIRECTION IN EPOXY BINDER
(B for E./E._ = 0.05; B, for E./E  =21)
° f'7b A f7b

N - Ef(l-uf) )4 Eb(l—vb) o)
1 (1+vf)(1—2vf) f (1+Vb)(1—2vb) b
v. E v, E
- f7f b b
AZ - (1+vf)(1-2vf) (I-B—ovb) ¥ (1+vb)((l-2vb) (Bovb)

E(l-v.) 1 +B 1+8 1
e 3 o, 1 -e , 1
Ay T -2v) \1 ] T"b[ Z +?<Vf[ z ‘* ll 'va]B-.>(1-uf)) ]

E(l-v,) 1+p 1+8 ]
b b 3 ® 1 ® ’ 1
Y Or v (1-2v) ‘T"b[ > t3 <”b‘ P ‘*\1'2"b]’5.>(1-u )]

b b

A =1 " 1.2y |8 Lihov (8 1 g (=
5 (T+v )(1-2v)) " T Vb|T-e T T Ve[Pe T %] P (Vf‘>
Yy Ep 3 1 RV
+(1+vb)(1-2ub) 7% 3\ % B."l'z”blﬁ. <‘u—b')

A= Gf(B'Avf) + Gb(l-B: v,)

o
A =G X4 el
g =GPy v +Gyviig T-zv, +
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TABLE 2. - EQUATIONS FOR ELASTIC CONSTANTS FOR STRETCHING FOR
ORTHOGONAL, ELLIPTICAL FILAMENTS IN 1- and 2- DIRECTIONS
WITH MINOR AXES IN 3-DIRECTION

A= (v 1-2v,) [I'Vfl' B—ovfz]+ Tp-zv) 't * B.sz]

Vo Ep Ve By
A, = (T (1 Zvy) [1 - B-."fl 'B-."fz]* T N1 20, [B."f + BovaJ

1

vy By [1 Bttt e ( Bt ]
- (v, ) - —2_ =

Ag = (T+v )(1-2v,) 2 . 2 (sz)
Vf Ef [ Bo * B. ﬁo + B. J
+ (THv M1-2v)) 2 (Vfl) 3 (sz)

E. (1-v,) E_(1-v,)
A, = b b 1-8 v, -v. |+ f f Bv, +v
4 (1+ vb)(l-va) - f1 f2 (1+uf)(1-2vf) P f1 f2

Ef(l-vf)

A Bove ~ B, sz]+ (THv)(1-2v) [‘B."fl + P sz]

) Eb(l-vb) .
6~ (l+y N1-2v) |
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TABLE 3, - EQUATIONS FOR ELASTIC CONSTANTS FOR ORTHOGONAL,
ROUND FILAMENTS IN 1~ and 2-DIRECTIONS

(1 ) (l-v.)
N S TN PR PO S W) ]s 5 5, v,
1 (1+vbN1-2vb) £, -e, £, (1+u )(1 Zv (1+v )1 -2V, ) 2
£ £ £ £
v. E v. E
A = ubEb 1-8 v, -8 v. |+ fl fl ]+ fz 2 [13 v ]
2 (1+vb)(1-2vb) e £, oo, f, (1+ufl)(1-2vfl) . i (l+u2)(1 2y ) le, £

(1-v E. (l-v. )

(1-v.) f1 f)
A = 1- -
4" (Tr)(1-2v,) [ B-.lvfl Vf2]+ (1+z4f1)(1-2uf1)['3.1"f1]+ (1+vf2)(1—2vf2) [VfZ]

5 2
_ E. (1-y) B (1-% )
A = Eb(l Ub) 1-8 v, -8 v + fl fl [ﬁ Ve ] fz f [3 Ve ]
6 (l+vb)(1—2ub) -, fl -e, f2 (1+v1)(1 Zv (1+V2)(1 sz) 2

A =G |1-8 v, -p v ]+G lﬁ'v ]+G [B’V ]
7 bL -e, f1 -0, f2 f1 . f1 fz ., f2

>
Nel
n
—
—
'
w
~
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<
-
e
1
w
~
~
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[a
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[
+
Q
n
s
—
™
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<
[ Y
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e
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\ TABLE 4. - EQUATIONS FOR ELASTIC CONSTANTS FOR ROUND FILAMENTS
_' " MAKING ANGLES OF + 8 DEGREES TO THE 1-DIRECTION

E (1l-v.)
A b b 4 . 4 , Zsm 9cos 9)]
- - 8
1 (“”b)“'ZVb) 1 vf[cos 6+ i sin 0 +(vbﬁ_.+ 1-2vy lB )

E(1-u)v) | 2 2
f £ f 4 .4 , \[2 sin 8 cos 9)
+ T+ (1-2v)) cos 6+ B sin’6 +(vao + {1'2”f B.)( T-v,

v. E 1+B
b b . 4 4 ’ 2 sin 9cos 9
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Figure 1. Repeating Element of Unidirectionally Reinforced Composite
Corres ponding to That for the Integrally Stiffened Plate of Reference 2.

Figure 2. Three-Dimensional Angle Notation Used in Analysis,
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Figure 3., Values of Transverse Effectiveness Coefficients B for Glass
Filaments in Epoxy Binder, Based on Upper Bounds of Reference 3.
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FILAMENTS

Figure 4. Schematic Representation of Straight-Line Binder Elements
Possible Among Perfectly-Packed, Equilateral Triangular Cross-
Section Filaments.
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Figure 5. Ratio of Transverse Stiffnesses of Epoxy Composites Having Uni-
directional Filamentary Glass Reinforcement of Triangular and
Circular Cross-Section,
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GLASS IN EPOXY
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Figure 6, Evaluation of Enhancement of Transverse Stiffness Provided by 4 to 1
Aspect Ratio Elliptical Cross-Sections of Glass in Epoxy.
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Figure 7. Evaluation of Enhancement of Transverse Stiffness by Angular
Filament Orientation.
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Figure 8. Ewvaluation of Enhancement of Transverse Stiffness Provided by 4 to 1
Aspect Ratio Elliptical Cross-Sections of Boron in Epoxy.
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Figure 9, Evaluation of Enhancement of Transverse Stiffness Provided to
Glass-Filament Reinforced Composites by a Filled Binder Having
a Stiffness Increase of 160%.
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